§ S* & IxS?
[An Introduction to Riemannian Geometry ] Ex 3.3 p.106 (4)

(4) Con

sider the usual local coordinates (6, ¢) in 52 ¢ R? defined by the parame-

terization ¢ : (0, ) x (0, 27) — R3 given by

(a)
(b)

(c)
(d)

(e)
()

(2)

(h)

(1)

M-
Riemann

(0, ¢) = (sinf cos @, sinf sin ¢, cos ).

Using these coordinates, determine the expression of the Riemannian metric
induced on §? by the Euclidean metric of R3.

Compute the Christoffel symbols for the Levi-Civita connection in these
coordinates.

Show that the equator is the image of a geodesic.

Show that any rotation about an axis through the origin in R? induces an
isometry of 52,

Show that the images of geodesics of S% are great circles.

Find a geodesic triangle (i.e. a triangle whose sides are images of geodesics)
whose internal angles add up to 3%

Letc: R — 52 be given by ¢(t) = (sinfy cost, sin Gy sint, cos fp), where
By € (O, %) (therefore c is not a geodesic). Let V be a vector field parallel
along ¢ such that V(0) = % (% is well defined at (sindy, 0, cos ) by
continuity). Compute the angle by which V is rotated when it returns to the
initial pDi]‘l[. (Remark: The angle you have computed is exactly the angle by which the oscillation
plane of the Foucault pendulum rotates during a day in a place at latitude -'-,_'— — B, as it tries to remain fixed
with respect to the stars on a rotating Earth).

Use this result to prove that no openset U C § 2 is isometric to an open set
W C R? with the Euclidean metric.

Given a geodesic ¢ : R — R? of R? with the Euclidean metric and a point
p & c(R), there exists a unique geodesic ¢ : R — R? (up to reparameter-
ization) such that p € ¢(R) and ¢(R) N ¢(R) = @ (parallel postulate). Is
this true in 527

N is an immersion - (N, g) is a Riemannian manifold > then ¢@'g isa
ian metric in M induced by ¢

(a) $:5° >R | ¢:(0,7)x(0,27) > R’

Then

(R%9)
(S%,9)
o 0

¢'g=0d6 +sin”@de’ is the induced metric on S*
g = (dx)* +(dy)* +(dz)’

g=¢'g

—— =(cos@dcosp,cosdsin ¢, —sin )

20 00



0 _9% =(—sin@sinp,sin #cos ¢,0)

op  op
0 0
gll 9o0 = % %>_1 ’
- - o 0 - 0 0 s
012 =921 =04, =Y =< @ 6_>_ * U =0,, =<%,%>=Sln o

¢'g=d0®dO+sin* Odp®@de

Or »on S® x=sinfcose,y=sindsing,z=cosé
dx = cos @ cos pdx —sin gsin pd @

dy = cos@sin pd@+sin&cos pde

dz =-singdé

Then dx®+dy’ +dz* =...=dé? +sin* d¢’

4
(S,h)—>(R% g) > g=dx*+dy*+dz*,h=d&?* +sin’ 6d ¢’

$¢'g=d& +sin*0de* =h
[RG3103InducedMetric]

(b) Compute the Christoffel symbols for the Levi-Civita connection in these
coordinates

1 0
_(t 0 i _
(gij)_(o Sinzé?j (g )_ 0 .12
sin“ @
=_ZZ: Z ag agwl_agw 1, osin’@

op )20 5

)=-sinécosé

[E#y, =T7,=cotd

Orlet L= (é’)2 +sin? 6((}5)2 » consider the Euler equation

ﬂ_i(ﬂ) 0 = 25in 0.c0s 6(¢)’ ——(26’) 0

é—sin&cos@(&)zzo imply I'j, =—sin&cosé

oL d oL
0_¢_E(3_¢) O:d—(sm 6x(2¢)) 0

25iN0cosOg+sin’0p=0 ¢+ 2cot00p=0 imply ry, =TI, =cotd



(c) Show that the equator is the image of a geodesic

Geodesic equation Xi+Z:1"ijk x-x=0 fori=1-2
ik

T%é—sin@cos@(éﬁ)zzo ’ %+2cot0[9¢.5=0

(d) Show that any rotation about an axis through the originin R® induces an
isometry of S?

Any rotation about an axis through the origin in R%is an isometry of R®* which

preserves S? o Since we are considering the metricin S? induced by the Euclidean

metricon R® - itis clear that such a rotation will determine an isometry of S? o

(e) Show that the images of geodesics of S? are great circles

Givenapoint p € SZandavectorv € T!)Sz.there existsarotation R : R® —
R such that R(p) = (1,0,0) and R(v) = (0, 1,0). The geodesic with
these initial conditions is clearly the curve ¢ given in coordinates by é(f) =
(B(1), (1)) = (% r). whose image is the equator. By Exercise 3.3(3), the
geodesic with initial condition v € ?a‘"pS2 must be R~ o ¢. Since the image
of ¢ is the intersection of S? with the plane z = 0, the image of R~! o ¢ is
the intersection of §2 with some plane through the origin, i.e. a great circle.

(f) Find a geodesic triangle whose internal angles add up to 377[
For exa,ple the triangle with vertices (1,0,0) > (0,1,0) » (0,0,1)
(g) Let c:R—S? begiven by c(t)=(sing,cost,sing,sint,cosd,) > where
6, € (0, %) (therefore cis not a geodesic) ° Let V be a vector field parallel along ¢

such that V(0) = %(6_69 is well defined at (siné,,cosé,) by continuity) °

Compute the angle by which V is rotated when it returns to the initial point °
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[From the geometry of Foucault pendulum to the

topology of planetary waves]

The metricon S is ds®>=dé&” +sin®@d¢’ and

F" —sin@dcos > F"’ —1“"j =cotd

—{[& vector field V“I5H4% x“(4) “F1 &@}JEJ—V” +I (lexiV' =0

Along thecurvec > =6, isaconstant > g=t then é: O,¢.5 = d—f =1
The equations for paralleltransport are Vi-i-ZFijk x'Vk=0
j.k

v +ZF9 XV1=0 V9+FZ¢¢V¢:O » V?=sing,cos gV’ =0...()
v¢’+2r¢’xv' 05 VO+T%, V4 +T%, gV’ =0 » Vi+cotgy’ =0..(2)
Since (.9:O,¢.5:1

(1) FEE t f45y - V =sing,cosg,V? = —sing, cosd, cot§V’ =—cos’ OV’

Rt 5y 582 » V7 = Acos(t cos6,) + Bsin(t cos6))

1 V'g_ 1

V¢ = =
sin g, cos 6, sin g, cos 6,

(—cos g, Asin(t cos 6,) + cos 6,B cos(t cos 6;))

V(O)———(V ?(0),V?(0)) = (1,0) =V?(0)=1V*?(0) =0

Imply A=1 ~ B=0 > so V’ =cos(tcos6,),V* =— 1
sin g,

0

sin(tcos g,)

Note that V|=g,V*V" =V +sin* gV NV’ =1

fEEzV(0),V (2m) (VA Ry ar

V(0)= 60 V (27) = cos(27(cos b, ))—0— sml

. 0
P sin(2z(cos 6?0))%

0
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Hifcosa =<V (0),V (27) >= cos(27 cos G,)
At LA o = 27 cos 6, 5% 27(1—cos 6,)

HERHR N LEAE (A = %— 0,) > RSN R4 24 /NI iEiE] 20 sin A
S [RIBH o %4 ]p.156~162

S — =

Do Carmo & _ZFEEAE p.58

P=Q ‘ P

2Tcos A

2rcosA=cotAixd = O6=27sin/i

(h) Use this result to prove that no open set U — S? is isometric to an open set
W < R? with the Euclidean metric

Using the fact that any point on S% can be carried to (0, 0, 1) by an appropriate
isometry, we just have to show that no open neighborhood U < §? of
(1,0, 0) is isometric to an open set V' C R2 with the Euclidean metric. Now
any such neighborhood contains the image of a curve ¢(f) as given in (g)

(for 8y > 0 sufficiently small). If U were isometric to W, the Levi—Civita
connection on U would be the trivial connection, and hence the parallel
vector field V() in (g) would satisfy V (0) = V(2x). Since this is not true
for any 6y € (0, 7). U cannot be isometric to W.

(i) 3K S?HY Gauss curvature

ds® = a’(d&* +sin® @d¢°)
I},=—sindcosd > Ty, =T, =cotd
Rips = 0o, —0,0 5, + 15,15, —T5.T5
= (sin* @ —cos® @) —0+0— (—sin & cos &)(cot ) =sin® &

A o 2 qin?
R'g¢9¢ = 992. R¢¢9¢ = g,g,gR¢g¢ =a"sin 0



All the components of the Riemann tensor either vanish or are related to this one by
symmetry o

. . _ ~ap
The Riccitensor R, =g“R,_,,

Rae = g¢¢R¢a¢a =1

06 =2
R, =097 Ry =SIN" 6O
The Ricci scalar

2
R= geeRgg + g¢¢R¢¢ = ?

p.139 Ex2.8 (6)

(6) Consider the metric
qg= Az(r]dr ®dr + r2do & df + r2 sin? fdp @dyp

onM=1x SZ, where r is a local coordinate on I C R and (#, ¢) are spherical
local coordinates on S2.
(a) Compute the Ricci tensor and the scalar curvature of this metric.

(b) What happens when A(r) = (1 —rz)_lIi (thatis, when M 1s locally isometric
to §3)?

(c) And when A(r) = (1 + rz)_%_ (that is, when M is locally isometric to the
hyperbolic 3-space)?
(d) For which functions A(r) 1s the scalar curvature constant?
(M, g)le—{EZRE
0 0 0

X,=—, X, =—, X, =—
Yar’? 80 o

< X, X >= A(r)?,< X,, X, >=r%,< X,, X, >=r?sin? @ » fLLEL orthonormal frames

10 10 1 0

-~ E,=="—,E,=————

Aor roe rsiné op

An orthonormal coframes @' = A(r)dr, @’ =rd@, »* =rsinfde

st TR do' =0’ A a);

RE, =

de'=0



do’ =dr Ad0 =o' A&} + @° A&} = Adr A &
a)fzidé?
A

de’® =sin@dr Ad@+rcosdd Adp = 0" A& + & A&

sin@

=Adr A@} +1rdO A - .'.a)f:nga,a)z =cosfdg
Q) =do! -0 n )
=dwf-wfm§=d(1de) (ﬂd(p)A( cosedgo)_—dmde_fw A
—de? - A = d(ﬂd) (—d@)/\(COSHdgo)
:(‘A;i@du Acwdse)/\dgo—TdOGS/\d(a
L‘”e

d¢9/\d(p——Aa) NN
rA’

—d@’ — @ A& =d(cosOdg) - (——d6’) (ﬂdq))

sm& 1

(F Do’ A’

=QJ(E,E;)) * R, =R

IJI kij

-A' A 1
R1221 =07 (E1’ E ) A F‘)131 Qs(Ep E ) Rgzz _Qs(EZ' E ) (K_l)
2 2 3 2A'
R1 I:‘>111 + R211 + R311 R121 - R131 = W
A' 1, 1
Rzz = Rllzz + R2222 + Re?zz = _R1221 - Rgsz = W _F(F_l)
A1 1
R133 + R233 + Rgss = _R1331 - R2332 = r_AS_I‘_Z(P_l)

Scalar curvature R=R;+R,, +R;; = —3——(_—1)
”



